skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferrenti, Austin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. ScSI, a missing member of the rare earth sulfoiodide (RESI) family of materials, has been synthesized for the first time. ScSI crystallizes in the FeOCl structure type, space group Pmmn (No. 59), a = 3.8904(2), b = 5.0732(9), c = 8.9574(6) Å. Both hyperspectral reflectance measurements and ab initio calculations support the presence of an indirect optical band gap of 2.0 eV. The bulk crystal is found to be readily exfoliatable, enabling its use as an optical component in novel heterostructures. The impact of lithium intercalation on its electronic band structure is also explored. A broader correlation is drawn between the observed structural trends in all known 1:1:1 sulfoiodide phases, cationic proportions, and electronic considerations. The realization of this phase both fills a significant synthetic gap in the literature and presents a novel exfoliatable phase for use as an optical component in next-generation heterostructure devices. 
    more » « less